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Chaos theory is the study of apparently random or 
unpredictable behaviour in systems governed by 
deterministic laws. ----  Encyclopedia Britannica.  
 
Deterministic chaos suggests a paradox because it  
connects two different notions: - 
 
a ) Determinism 
 
b) Randomness 
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NOW, we will see some important concepts of Dynamical Systems Theory…[READ SLIDE]….Figure shows bifurcation diagram for logistic map.



In deterministic dynamical systems, deterministic chaos is 
an unstable aperiodic behavior, which shows sensitive 
dependence on initial conditions. 
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[READ SLIDE]….Both notions are at work here; 17th century—Newtonian Determinism as well as 20th century —Chaos.



 
Examples of chaotic dynamical systems are: 
 
 - The solar system (Three-body problem) 
 
 - Atmosphere (Butterfly effect) 
 
 - Population dynamics (Logistic map) 
 
 - Human body (Cardiac arrhythmias) 
 
 - Double pendulum 
 
 - Power electronics circuits 
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The Butterfly Effect is a term coined by Edward Lorenz. It 
highlights the possibility that small causes may have vital 
effects. 
 
 
 
 
 
 
 
 
In chaos theory, the butterfly effect is the sensitive 
dependence on initial conditions in which a small change in 
one state of a nonlinear deterministic system can result in 
large differences in a later state.  
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Lorenz attractor 

Presenter
Presentation Notes
[READ SLIDE]



 1976: Robert May’s famous review on Logistic Map 
 
- The logistic map is a polynomial mapping.  
 
 - It is often cited as a classic example of how complex, chaotic 
behaviour can arise from very simple nonlinear dynamical 
equations. 
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Time-Series plots & Bifurcation Diagram of Logistic Map 
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Mile Stones 
 
1890 – Henri Poincare – found non-periodic orbits  
while studying three body problem 
 
1927 - Van der Pol – observed chaos in radio circuit. 
 
1960 – Edward Lorenz – “Butterfly effect” 
 
1975 – Li and Yorke coined the term “chaos” 
 
1970s – Mandelbrot – “The Fractal Geometry of Nature” 
 
1976 – Robert May –  wrote his famous review on “Logistic Map” 
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Chaos theory has been mentioned in works of literature 
and movies. 



Fractals are infinitely self-similar, iterated, and detailed 
structures having fractal dimension.  

Self-similarity is symmetry 
across all scales.  

Romanesco broccoli is 
strikingly fractal in nature. 



Fractals appear self-similar under different degrees of 
magnification, so they have their own dimension; fractal 
dimension. 
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Chaotic dynamics are quantified:  
 
- To distinguish chaotic behavior from random (noisy) 
behavior. 
 
 - To determine the variables required to model the 
dynamics of the system. 
 
 - To understand the changes in the dynamical behavior of 
the system. 
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Why study and measure deterministic chaos?.... [READ SLIDE]



It has been widely used in different problems, which either 
lack a mathematical model or lack access to multiple 
variables.  
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The most direct link between chaos theory and the 
real world is the analysis of time-series.  

Presenter
Presentation Notes
Nonlinear time-series analysis has been developed on the basis of Chaos theory………. [READ SLIDE].



Nonlinear time-series analysis usually consists of these 
steps: 
 
(i) Reconstruction of the system dynamics in the state-
space using time-delay embedding. 
 
(ii) Quantification of the reconstructed attractor using 
nonlinear measures.  
 Correlation dimension 
 Lyapunov exponent 
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NEXT,….Nonlinear time-series analysis has been widely used in different problems, which either lack a mathematical model or access to multiple variables…..[Read slide]




Embedding is a mapping from one-dimensional space to 
an n-dimensional space. 

Takens proved that there is one-to-one correspondence 
between the reconstructed state-space and the original 
dynamical space. 
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[READ SLIDE]…..And the key concept of embedding is that all the variables of a dynamical system affect one another.



Packard and Takens separately introduced state-space 
reconstruction. 
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It is possible to conserve geometrical invariants like the 
correlation dimension and the Lyapunov exponent of the 
attractor. 

 They demonstrated that a 
vector space, which is 
comparable to the actual 
phase-space can be 
reconstructed from scalar 
data. 
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Nonlinear time-series analysis has been developed on the basis of Chaos theory………. [READ SLIDE].



Let a time-series 
 
 
be embedded into an m-dimensional state-space by the delay 
vectors. 
 
 In the state-space, a point is given as:  
 
 
Where ‘m’ is the embedding dimension and       is the time delay or 
time lag. 

1 2 3, , ,..., Nx x x x

2 (m 1)(t) , , ,...,t t t ty x x x xτ τ τ− − − −=

τ
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According to Takens’ embedding theorem, embedding can 
be achieved at almost any time lag , provided m is 
sufficiently large.  
But extreme values of    (either too large or too small) will 
produce problems in reconstructing attractor. 

τ

18 Reconstructed phase-spaces for Lorenz system with embedding dimension, m = 3 
and different values of time delays = 3, 17, and 100 
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Correlation dimension characterizes the fractal 
structure of the attractor. 
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N(r) ∝ rv 

v= dlogN(r)/dlog(r) 

It is an estimate of the dimensionality of the space 
occupied by a set of random points. 

  If v integer ->  the attractor is a regular geometric object 
  If v noninteger ->  the attractor is a fractal 
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λ = <ln|∆Rn/∆R0|>  

∆ Rn = ∆ R0eλn 

Lyapunov exponent quantifies rate of divergence of 
neighboring trajectories in the reconstructed phase-
space. 

 For stable fixed points,;  λ < 0, 
 For noise;  λ = ∞,  
 For chaotic attractors;  λ > 0 
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"When the present determines 
the future, but the approximate 
present does not approximately 
determine the future.“ 

-Edward Lorenz 
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